
Chapter 4

Skiplists

In this chapter, we discuss a beautiful data structure: the skiplist, which
has a variety of applications. Using a skiplist we can implement a List
that has O(logn) time implementations of get(i), set(i,x), add(i,x), and
remove(i). We can also implement an SSet in which all operations run in
O(logn) expected time.

The efficiency of skiplists relies on their use of randomization. When
a new element is added to a skiplist, the skiplist uses random coin tosses
to determine the height of the new element. The performance of skiplists
is expressed in terms of expected running times and path lengths. This
expectation is taken over the random coin tosses used by the skiplist. In
the implementation, the random coin tosses used by a skiplist are simu-
lated using a pseudo-random number (or bit) generator.

4.1 The Basic Structure

Conceptually, a skiplist is a sequence of singly-linked lists L0, . . . ,Lh. Each
list Lr contains a subset of the items in Lr−1. We start with the input list
L0 that contains n items and construct L1 from L0, L2 from L1, and so on.
The items in Lr are obtained by tossing a coin for each element, x, in Lr−1

and including x in Lr if the coin turns up as heads. This process ends
when we create a list Lr that is empty. An example of a skiplist is shown
in Figure 4.1.

For an element, x, in a skiplist, we call the height of x the largest value

87

§4.1 Skiplists

0 1 2 3 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

Figure 4.1: A skiplist containing seven elements.

r such that x appears in Lr . Thus, for example, elements that only appear
in L0 have height 0. If we spend a few moments thinking about it, we
notice that the height of x corresponds to the following experiment: Toss
a coin repeatedly until it comes up as tails. How many times did it come
up as heads? The answer, not surprisingly, is that the expected height of
a node is 1. (We expect to toss the coin twice before getting tails, but we
don’t count the last toss.) The height of a skiplist is the height of its tallest
node.

At the head of every list is a special node, called the sentinel, that acts
as a dummy node for the list. The key property of skiplists is that there is
a short path, called the search path, from the sentinel in Lh to every node
in L0. Remembering how to construct a search path for a node, u, is easy
(see Figure 4.2) : Start at the top left corner of your skiplist (the sentinel
in Lh) and always go right unless that would overshoot u, in which case
you should take a step down into the list below.

More precisely, to construct the search path for the node u in L0, we
start at the sentinel, w, in Lh. Next, we examine w.next. If w.next contains
an item that appears before u in L0, then we set w = w.next. Otherwise,
we move down and continue the search at the occurrence of w in the list
Lh−1. We continue this way until we reach the predecessor of u in L0.

The following result, which we will prove in Section 4.4, shows that
the search path is quite short:

Lemma 4.1. The expected length of the search path for any node, u, in L0 is
at most 2logn+O(1) =O(logn).

A space-efficient way to implement a skiplist is to define a Node, u,

88

The Basic Structure §4.1

0 1 2 3 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

Figure 4.2: The search path for the node containing 4 in a skiplist.

as consisting of a data value, x, and an array, next, of pointers, where
u.next[i] points to u’s successor in the list Li. In this way, the data, x, in
a node is referenced only once, even though x may appear in several lists.

SkiplistSSet
class Node<T> {

T x;
Node<T>[] next;
Node(T ix, int h) {

x = ix;
next = Array.newInstance(Node.class, h+1);

}
int height() {

return next.length - 1;
}

}

The next two sections of this chapter discuss two different applica-
tions of skiplists. In each of these applications, L0 stores the main struc-
ture (a list of elements or a sorted set of elements). The primary difference
between these structures is in how a search path is navigated; in partic-
ular, they differ in how they decide if a search path should go down into
Lr−1 or go right within Lr .

89

§4.2 Skiplists

4.2 SkiplistSSet: An Efficient SSet

A SkiplistSSet uses a skiplist structure to implement the SSet interface.
When used in this way, the list L0 stores the elements of the SSet in sorted
order. The find(x) method works by following the search path for the
smallest value y such that y ≥ x:

SkiplistSSet
Node<T> findPredNode(T x) {

Node<T> u = sentinel;
int r = h;
while (r >= 0) {

while (u.next[r] != null && compare(u.next[r].x,x) < 0)
u = u.next[r]; // go right in list r

r--; // go down into list r-1
}
return u;

}
T find(T x) {

Node<T> u = findPredNode(x);
return u.next[0] == null ? null : u.next[0].x;

}

Following the search path for y is easy: when situated at some node, u,
in Lr, we look right to u.next[r].x. If x > u.next[r].x, then we take a step
to the right in Lr; otherwise, we move down into Lr−1. Each step (right
or down) in this search takes only constant time; thus, by Lemma 4.1, the
expected running time of find(x) is O(logn).

Before we can add an element to a SkipListSSet, we need a method
to simulate tossing coins to determine the height, k, of a new node. We do
so by picking a random integer, z, and counting the number of trailing 1s
in the binary representation of z:1

SkiplistSSet
int pickHeight() {

int z = rand.nextInt();

1This method does not exactly replicate the coin-tossing experiment since the value of k
will always be less than the number of bits in an int. However, this will have negligible im-
pact unless the number of elements in the structure is much greater than 232 = 4294967296.

90

SkiplistSSet: An Efficient SSet §4.2

int k = 0;
int m = 1;
while ((z & m) != 0) {

k++;
m <<= 1;

}
return k;

}

To implement the add(x) method in a SkiplistSSet we search for x
and then splice x into a few lists L0,. . . ,Lk, where k is selected using the
pickHeight() method. The easiest way to do this is to use an array, stack,
that keeps track of the nodes at which the search path goes down from
some list Lr into Lr−1. More precisely, stack[r] is the node in Lr where
the search path proceeded down into Lr−1. The nodes that we modify to
insert x are precisely the nodes stack[0], . . . ,stack[k]. The following code
implements this algorithm for add(x):

SkiplistSSet
boolean add(T x) {

Node<T> u = sentinel;
int r = h;
int comp = 0;
while (r >= 0) {

while (u.next[r] != null
&& (comp = compare(u.next[r].x,x)) < 0)

u = u.next[r];
if (u.next[r] != null && comp == 0) return false;
stack[r--] = u; // going down, store u

}
Node<T> w = new Node<T>(x, pickHeight());
while (h < w.height())

stack[++h] = sentinel; // height increased
for (int i = 0; i < w.next.length; i++) {

w.next[i] = stack[i].next[i];
stack[i].next[i] = w;

}
n++;
return true;

}

91

§4.2 Skiplists

0 1 2 3 4 5 6

sentinel

3.5

add(3.5)

Figure 4.3: Adding the node containing 3.5 to a skiplist. The nodes stored in
stack are highlighted.

Removing an element, x, is done in a similar way, except that there is
no need for stack to keep track of the search path. The removal can be
done as we are following the search path. We search for x and each time
the search moves downward from a node u, we check if u.next.x = x and
if so, we splice u out of the list:

SkiplistSSet
boolean remove(T x) {

boolean removed = false;
Node<T> u = sentinel;
int r = h;
int comp = 0;
while (r >= 0) {

while (u.next[r] != null
&& (comp = compare(u.next[r].x, x)) < 0) {

u = u.next[r];
}
if (u.next[r] != null && comp == 0) {
removed = true;
u.next[r] = u.next[r].next[r];
if (u == sentinel && u.next[r] == null)

h--; // height has gone down
}
r--;

}
if (removed) n--;
return removed;

}

92

SkiplistList: An Efficient Random-Access List §4.3

0 1 2 4 5 6

sentinel remove(3)

3

Figure 4.4: Removing the node containing 3 from a skiplist.

4.2.1 Summary

The following theorem summarizes the performance of skiplists when
used to implement sorted sets:

Theorem 4.1. SkiplistSSet implements the SSet interface. A SkiplistS-

Set supports the operations add(x), remove(x), and find(x) in O(logn) ex-
pected time per operation.

4.3 SkiplistList: An Efficient Random-Access List

A SkiplistList implements the List interface using a skiplist structure.
In a SkiplistList, L0 contains the elements of the list in the order in
which they appear in the list. As in a SkiplistSSet, elements can be
added, removed, and accessed in O(logn) time.

For this to be possible, we need a way to follow the search path for the
ith element in L0. The easiest way to do this is to define the notion of the
length of an edge in some list, Lr. We define the length of every edge in
L0 as 1. The length of an edge, e, in Lr, r > 0, is defined as the sum of the
lengths of the edges below e in Lr−1. Equivalently, the length of e is the
number of edges in L0 below e. See Figure 4.5 for an example of a skiplist
with the lengths of its edges shown. Since the edges of skiplists are stored
in arrays, the lengths can be stored the same way:

SkiplistList
class Node {

93

§4.3 Skiplists

0 1 2 3 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

1 1 1 1 1 1 1

3 1 1 1 1

113

3 2

5

5

Figure 4.5: The lengths of the edges in a skiplist.

T x;
Node[] next;
int[] length;
Node(T ix, int h) {

x = ix;
next = Array.newInstance(Node.class, h+1);
length = new int[h+1];

}
int height() {

return next.length - 1;
}

}

The useful property of this definition of length is that, if we are cur-
rently at a node that is at position j in L0 and we follow an edge of length
`, then we move to a node whose position, in L0, is j + `. In this way,
while following a search path, we can keep track of the position, j, of the
current node in L0. When at a node, u, in Lr, we go right if j plus the
length of the edge u.next[r] is less than i. Otherwise, we go down into
Lr−1.

SkiplistList
Node findPred(int i) {

Node u = sentinel;
int r = h;
int j = -1; // index of the current node in list 0
while (r >= 0) {

while (u.next[r] != null && j + u.length[r] < i) {
j += u.length[r];

94

SkiplistList: An Efficient Random-Access List §4.3

u = u.next[r];
}
r--;

}
return u;

}

SkiplistList
T get(int i) {

return findPred(i).next[0].x;
}
T set(int i, T x) {

Node u = findPred(i).next[0];
T y = u.x;
u.x = x;
return y;

}

Since the hardest part of the operations get(i) and set(i,x) is finding
the ith node in L0, these operations run in O(logn) time.

Adding an element to a SkiplistList at a position, i, is fairly simple.
Unlike in a SkiplistSSet, we are sure that a new node will actually be
added, so we can do the addition at the same time as we search for the
new node’s location. We first pick the height, k, of the newly inserted
node, w, and then follow the search path for i. Any time the search path
moves down from Lr with r ≤ k, we splice w into Lr. The only extra care
needed is to ensure that the lengths of edges are updated properly. See
Figure 4.6.

Note that, each time the search path goes down at a node, u, in Lr,
the length of the edge u.next[r] increases by one, since we are adding an
element below that edge at position i. Splicing the node w between two
nodes, u and z, works as shown in Figure 4.7. While following the search
path we are already keeping track of the position, j, of u in L0. Therefore,
we know that the length of the edge from u to w is i − j. We can also
deduce the length of the edge from w to z from the length, `, of the edge
from u to z. Therefore, we can splice in w and update the lengths of the
edges in constant time.

95

§4.3 Skiplists

0 1 2 3 4 5 6

sentinel

x

add(4,x)

1 1 1 1 1 2 1 1 1 1

3

3

3

5 6

5 6

1

1

1 1 11 2 1

1 2 1

2 3 2

1

1

Figure 4.6: Adding an element to a SkiplistList.

j

`
u

j

u w

i

i− j ` +1− (i− j)

` +1

z

z

Figure 4.7: Updating the lengths of edges while splicing a node w into a skiplist.

This sounds more complicated than it is, for the code is actually quite
simple:

SkiplistList
void add(int i, T x) {

Node w = new Node(x, pickHeight());
if (w.height() > h)

h = w.height();
add(i, w);

}

SkiplistList
Node add(int i, Node w) {

Node u = sentinel;
int k = w.height();
int r = h;
int j = -1; // index of u
while (r >= 0) {

96

SkiplistList: An Efficient Random-Access List §4.3

0 1 2 4 5 6

sentinel

L0

L1

L2

L3

L4

L5

1 1 1 1 1

3 1 1

3

3 2 1

5 4

5 4

remove(3)

3
1 1

1 1

11 1

1

1

Figure 4.8: Removing an element from a SkiplistList.

while (u.next[r] != null && j+u.length[r] < i) {
j += u.length[r];
u = u.next[r];

}
u.length[r]++; // accounts for new node in list 0
if (r <= k) {
w.next[r] = u.next[r];
u.next[r] = w;
w.length[r] = u.length[r] - (i - j);
u.length[r] = i - j;

}
r--;

}
n++;
return u;

}

By now, the implementation of the remove(i) operation in a Skip-
listList should be obvious. We follow the search path for the node at
position i. Each time the search path takes a step down from a node, u,
at level r we decrement the length of the edge leaving u at that level. We
also check if u.next[r] is the element of rank i and, if so, splice it out of
the list at that level. An example is shown in Figure 4.8.

SkiplistList
T remove(int i) {

T x = null;
Node u = sentinel;
int r = h;

97

§4.4 Skiplists

int j = -1; // index of node u
while (r >= 0) {

while (u.next[r] != null && j+u.length[r] < i) {
j += u.length[r];
u = u.next[r];

}
u.length[r]--; // for the node we are removing
if (j + u.length[r] + 1 == i && u.next[r] != null) {
x = u.next[r].x;
u.length[r] += u.next[r].length[r];
u.next[r] = u.next[r].next[r];
if (u == sentinel && u.next[r] == null)

h--;
}
r--;

}
n--;
return x;

}

4.3.1 Summary

The following theorem summarizes the performance of the Skiplist-
List data structure:

Theorem 4.2. A SkiplistList implements the List interface. A Skip-

listList supports the operations get(i), set(i,x), add(i,x), and remove(i)
in O(logn) expected time per operation.

4.4 Analysis of Skiplists

In this section, we analyze the expected height, size, and length of the
search path in a skiplist. This section requires a background in basic
probability. Several proofs are based on the following basic observation
about coin tosses.

Lemma 4.2. Let T be the number of times a fair coin is tossed up to and
including the first time the coin comes up heads. Then E[T] = 2.

98

Analysis of Skiplists §4.4

Proof. Suppose we stop tossing the coin the first time it comes up heads.
Define the indicator variable

Ii =
{

0 if the coin is tossed less than i times
1 if the coin is tossed i or more times

Note that Ii = 1 if and only if the first i − 1 coin tosses are tails, so E[Ii] =
Pr{Ii = 1} = 1/2i−1. Observe that T , the total number of coin tosses, can
be written as T =

∑∞
i=1 Ii . Therefore,

E[T] = E

∞∑

i=1

Ii

=
∞∑

i=1

E[Ii]

=
∞∑

i=1

1/2i−1

= 1 + 1/2 + 1/4 + 1/8 + · · ·
= 2 .

The next two lemmata tell us that skiplists have linear size:

Lemma 4.3. The expected number of nodes in a skiplist containing n ele-
ments, not including occurrences of the sentinel, is 2n.

Proof. The probability that any particular element, x, is included in list
Lr is 1/2r, so the expected number of nodes in Lr is n/2r.2 Therefore, the
total expected number of nodes in all lists is

∞∑

r=0

n/2r = n(1 + 1/2 + 1/4 + 1/8 + · · ·) = 2n .

Lemma 4.4. The expected height of a skiplist containing n elements is at most
logn+ 2.

Proof. For each r ∈ {1,2,3, . . . ,∞}, define the indicator random variable

Ir =
{

0 if Lr is empty
1 if Lr is non-empty

2See Section 1.3.4 to see how this is derived using indicator variables and linearity of
expectation.

99

§4.4 Skiplists

The height, h, of the skiplist is then given by

h =
∞∑

i=1

Ir .

Note that Ir is never more than the length, |Lr|, of Lr, so

E[Ir] ≤ E[|Lr|] = n/2r .

Therefore, we have

E[h] = E

∞∑

r=1

Ir

=
∞∑

r=1

E[Ir]

=
blognc∑

r=1

E[Ir] +
∞∑

r=blognc+1

E[Ir]

≤
blognc∑

r=1

1 +
∞∑

r=blognc+1

n/2r

≤ logn+
∞∑

r=0

1/2r

= logn+ 2 .

Lemma 4.5. The expected number of nodes in a skiplist containing n ele-
ments, including all occurrences of the sentinel, is 2n+O(logn).

Proof. By Lemma 4.3, the expected number of nodes, not including the
sentinel, is 2n. The number of occurrences of the sentinel is equal to
the height, h, of the skiplist so, by Lemma 4.4 the expected number of
occurrences of the sentinel is at most logn+ 2 =O(logn).

Lemma 4.6. The expected length of a search path in a skiplist is at most
2logn+O(1).

Proof. The easiest way to see this is to consider the reverse search path for
a node, x. This path starts at the predecessor of x in L0. At any point in

100

Analysis of Skiplists §4.4

time, if the path can go up a level, then it does. If it cannot go up a level
then it goes left. Thinking about this for a few moments will convince
us that the reverse search path for x is identical to the search path for x,
except that it is reversed.

The number of nodes that the reverse search path visits at a particular
level, r, is related to the following experiment: Toss a coin. If the coin
comes up as heads, then move up and stop. Otherwise, move left and
repeat the experiment. The number of coin tosses before the heads rep-
resents the number of steps to the left that a reverse search path takes at
a particular level.3 Lemma 4.2 tells us that the expected number of coin
tosses before the first heads is 1.

Let Sr denote the number of steps the forward search path takes at
level r that go to the right. We have just argued that E[Sr] ≤ 1. Further-
more, Sr ≤ |Lr|, since we can’t take more steps in Lr than the length of Lr,
so

E[Sr] ≤ E[|Lr|] = n/2r .

We can now finish as in the proof of Lemma 4.4. Let S be the length of
the search path for some node, u, in a skiplist, and let h be the height of
the skiplist. Then

E[S] = E

h+

∞∑

r=0

Sr

= E[h] +
∞∑

r=0

E[Sr]

= E[h] +
blognc∑

r=0

E[Sr] +
∞∑

r=blognc+1

E[Sr]

≤ E[h] +
blognc∑

r=0

1 +
∞∑

r=blognc+1

n/2r

≤ E[h] +
blognc∑

r=0

1 +
∞∑

r=0

1/2r

3Note that this might overcount the number of steps to the left, since the experiment
should end either at the first heads or when the search path reaches the sentinel, whichever
comes first. This is not a problem since the lemma is only stating an upper bound.

101

§4.5 Skiplists

≤ E[h] +
blognc∑

r=0

1 +
∞∑

r=0

1/2r

≤ E[h] + logn+ 3

≤ 2logn+ 5 .

The following theorem summarizes the results in this section:

Theorem 4.3. A skiplist containing n elements has expected size O(n) and
the expected length of the search path for any particular element is at most
2logn+O(1).

4.5 Discussion and Exercises

Skiplists were introduced by Pugh [62] who also presented a number of
applications and extensions of skiplists [61]. Since then they have been
studied extensively. Several researchers have done very precise analyses
of the expected length and variance of the length of the search path for
the ith element in a skiplist [45, 44, 58]. Deterministic versions [53], bi-
ased versions [8, 26], and self-adjusting versions [12] of skiplists have all
been developed. Skiplist implementations have been written for various
languages and frameworks and have been used in open-source database
systems [71, 63]. A variant of skiplists is used in the HP-UX operating
system kernel’s process management structures [42]. Skiplists are even
part of the Java 1.6 API [55].

Exercise 4.1. Illustrate the search paths for 2.5 and 5.5 on the skiplist in
Figure 4.1.

Exercise 4.2. Illustrate the addition of the values 0.5 (with a height of 1)
and then 3.5 (with a height of 2) to the skiplist in Figure 4.1.

Exercise 4.3. Illustrate the removal of the values 1 and then 3 from the
skiplist in Figure 4.1.

Exercise 4.4. Illustrate the execution of remove(2) on the SkiplistList
in Figure 4.5.

102

Discussion and Exercises §4.5

Exercise 4.5. Illustrate the execution of add(3,x) on the SkiplistList in
Figure 4.5. Assume that pickHeight() selects a height of 4 for the newly
created node.

Exercise 4.6. Show that, during an add(x) or a remove(x) operation, the
expected number of pointers in a SkiplistSet that get changed is con-
stant.

Exercise 4.7. Suppose that, instead of promoting an element from Li−1

into Li based on a coin toss, we promote it with some probability p, 0 <
p < 1.

1. Show that, with this modification, the expected length of a search
path is at most (1/p) log1/p n+O(1).

2. What is the value of p that minimizes the preceding expression?

3. What is the expected height of the skiplist?

4. What is the expected number of nodes in the skiplist?

Exercise 4.8. The find(x) method in a SkiplistSet sometimes performs
redundant comparisons; these occur when x is compared to the same value
more than once. They can occur when, for some node, u, u.next[r] =
u.next[r− 1]. Show how these redundant comparisons happen and mod-
ify find(x) so that they are avoided. Analyze the expected number of
comparisons done by your modified find(x) method.

Exercise 4.9. Design and implement a version of a skiplist that imple-
ments the SSet interface, but also allows fast access to elements by rank.
That is, it also supports the function get(i), which returns the element
whose rank is i in O(logn) expected time. (The rank of an element x in
an SSet is the number of elements in the SSet that are less than x.)

Exercise 4.10. A finger in a skiplist is an array that stores the sequence
of nodes on a search path at which the search path goes down. (The vari-
able stack in the add(x) code on page 91 is a finger; the shaded nodes in
Figure 4.3 show the contents of the finger.) One can think of a finger as
pointing out the path to a node in the lowest list, L0.

103

§4.5 Skiplists

A finger search implements the find(x) operation using a finger, by
walking up the list using the finger until reaching a node u such that
u.x < x and u.next = null or u.next.x > x and then performing a normal
search for x starting from u. It is possible to prove that the expected
number of steps required for a finger search is O(1 + log r), where r is the
number values in L0 between x and the value pointed to by the finger.

Implement a subclass of Skiplist called SkiplistWithFinger that
implements find(x) operations using an internal finger. This subclass
stores a finger, which is then used so that every find(x) operation is im-
plemented as a finger search. During each find(x) operation the finger is
updated so that each find(x) operation uses, as a starting point, a finger
that points to the result of the previous find(x) operation.

Exercise 4.11. Write a method, truncate(i), that truncates a Skiplist-
List at position i. After the execution of this method, the size of the
list is i and it contains only the elements at indices 0, . . . ,i − 1. The re-
turn value is another SkiplistList that contains the elements at indices
i, . . . ,n− 1. This method should run in O(logn) time.

Exercise 4.12. Write a SkiplistList method, absorb(l2), that takes as
an argument a SkiplistList, l2, empties it and appends its contents, in
order, to the receiver. For example, if l1 contains a,b,c and l2 contains
d,e, f , then after calling l1.absorb(l2), l1 will contain a,b,c,d,e, f and l2
will be empty. This method should run in O(logn) time.

Exercise 4.13. Using the ideas from the space-efficient list, SEList, de-
sign and implement a space-efficient SSet, SESSet. To do this, store
the data, in order, in an SEList, and store the blocks of this SEList in
an SSet. If the original SSet implementation uses O(n) space to store
n elements, then the SESSet will use enough space for n elements plus
O(n/b+ b) wasted space.

Exercise 4.14. Using an SSet as your underlying structure, design and
implement an application that reads a (large) text file and allows you to
search, interactively, for any substring contained in the text. As the user
types their query, a matching part of the text (if any) should appear as a
result.

104

Discussion and Exercises §4.5

Hint 1: Every substring is a prefix of some suffix, so it suffices to store all
suffixes of the text file.
Hint 2: Any suffix can be represented compactly as a single integer indi-
cating where the suffix begins in the text.
Test your application on some large texts, such as some of the books
available at Project Gutenberg [1]. If done correctly, your applications
will be very responsive; there should be no noticeable lag between typing
keystrokes and seeing the results.

Exercise 4.15. (This excercise should be done after reading about binary
search trees, in Section 6.2.) Compare skiplists with binary search trees
in the following ways:

1. Explain how removing some edges of a skiplist leads to a structure
that looks like a binary tree and is similar to a binary search tree.

2. Skiplists and binary search trees each use about the same number
of pointers (2 per node). Skiplists make better use of those pointers,
though. Explain why.

105

